Decision-tree instance-space decomposition with grouped gain-ratio
نویسندگان
چکیده
This paper examines a decision-tree framework for instance-space decomposition. According to the framework, the original instance-space is hierarchically partitioned into multiple subspaces and a distinct classifier is assigned to each subspace. Subsequently, an unlabeled, previously-unseen instance is classified by employing the classifier that was assigned to the subspace to which the instance belongs. After describing the framework, the paper suggests a novel splitting-rule for the framework and presents an experimental study, which was conducted, to compare various implementations of the framework. The study indicates that using the novel splitting-rule, previously presented implementations of the framework, can be improved in terms of accuracy and computation time.
منابع مشابه
Hybrid decision tree
In this paper, a hybrid learning approach named HDT is proposed. HDT simulates human reasoning by using symbolic learning to do qualitative analysis and using neural learning to do subsequent quantitative analysis. It generates the trunk of a binary hybrid decision tree according to the binary information gain ratio criterion in an instance space defined by only original unordered attributes. I...
متن کاملComparing different stopping criteria for fuzzy decision tree induction through IDFID3
Fuzzy Decision Tree (FDT) classifiers combine decision trees with approximate reasoning offered by fuzzy representation to deal with language and measurement uncertainties. When a FDT induction algorithm utilizes stopping criteria for early stopping of the tree's growth, threshold values of stopping criteria will control the number of nodes. Finding a proper threshold value for a stopping crite...
متن کاملAdaptive Layered Approach using Machine Learning Techniques with Gain Ratio for Intrusion Detection Systems
Intrusion Detection System (IDS) has increasingly become a crucial issue for computer and network systems. Optimizing performance of IDS becomes an important open problem which receives more and more attention from the research community. In this work, A multi-layer intrusion detection model is designed and developed to achieve high efficiency and improve the detection and classification rate a...
متن کاملLearning with Local Drift Detection
Most of the work in Machine Learning assume that examples are generated at random according to some stationary probability distribution. In this work we study the problem of learning when the distribution that generates the examples changes over time. We present a method for detection of changes in the probability distribution of examples. The idea behind the drift detection method is to monito...
متن کاملFingerprint Gender Classification using Univariate Decision Tree (J48)
Data mining is the process of analyzing data from a different category. This data provide information and data mining will extracts a new knowledge from it and a new useful information is created. Decision tree learning is a method commonly used in data mining. The decision tree is a model of decision that looklike as a tree-like graph with nodes, branches and leaves. Each internal node denotes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 177 شماره
صفحات -
تاریخ انتشار 2007